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Introduction

Alzheimer disease (AD) is a slowly progressing neurodegenerative 
disorder characterized by the misfolding, aggregation and gain 
of toxicity of amyloid-β (Aβ) and tau in the brain.1,2 Aggregated 
Aβ, in the form of densely packed fibrils, accumulates extracel-
lularly in structures known as amyloid plaques. The tau aggre-
gates also correspond to tightly packed filaments, but in contrast 
to plaques, they accumulate intracellularly in diseased neurons, 
where they are known as neurofibrillary tangles (NFTs). The 
term paired helical filament, or PHF, is often used to describe the 
individual tau filaments found in NFTs.

Aβ comprises a family of ~40 amino acid long peptide cleav-
age products of the transmembrane amyloid precursor protein 
and has no known essential function in normal physiology, 
but has long been regarded as a primary cause of AD.3,4 The 
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Alzheimer disease (AD) has traditionally been thought to 
involve the misfolding and aggregation of two different 
factors that contribute in parallel to pathogenesis: amyloid-β 
(Aβ) peptides, which represent proteolytic fragments of the 
transmembrane amyloid precursor protein, and tau, which 
normally functions as a neuronally enriched, microtubule-
associated protein that predominantly accumulates in axons. 
Recent evidence has challenged this model, however, by 
revealing numerous functional interactions between Aβ and 
tau in the context of pathogenic mechanisms for AD. Moreover, 
the propagation of toxic, misfolded Aβ and tau bears a striking 
resemblance to the propagation of toxic, misfolded forms 
of the canonical prion protein, PrP, and misfolded Aβ has 
been shown to induce tau misfolding in vitro through direct, 
intermolecular interaction. in this review we discuss evidence 
for the prion-like properties of both Aβ and tau individually, 
as well as the intriguing possibility that misfolded Aβ acts as a 
template for tau misfolding in vivo.
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original focus on large, fibrillar Aβ aggregates as possible caus-
ative agents for the memory and cognitive decline associated with 
AD has gradually shifted over the past decade to the realization 
that smaller, soluble Aβ oligomers are more relevant culprits. 
Compared with fibrillar Aβ, soluble Aβ oligomers correlate bet-
ter with neurotoxicity in vivo and are far more toxic than Aβ 
fibrils to cultured neurons.5-12

Tau was discovered nearly 40 years ago as a microtubule-
associated protein (MAP) that stimulates tubulin polymeriza-
tion,13 but it was not until a decade later that its presence in NFTs 
was first described.14-16 Surprisingly, beyond its generic MAP 
function as a stimulator of microtubule (MT) assembly, the only 
known specific function of tau is that it impedes the movement 
of kinesin MT motor proteins and their attached cargoes along 
MTs.17-20 Historically, tau has received much less attention than 
Aβ in the AD field, despite the fact that a spectrum of neurode-
generative disorders known collectively as non-Alzheimer tauop-
athies are invariably characterized by PHF accumulation in the 
brain and can be caused by any of dozens of tau mutations.21 
PHF tau is abnormally phosphorylated at dozens of sites,22 some 
of which appear in vivo in both human AD cases and transgenic 
mice before the tau assembles into filaments.23

About three decades after Prusiner first described prion driven 
infection in Creutzfeldt-Jacob disease24 and speculated that a 
similar infectious process may apply to AD,25 a recent wave of 
evidence has demonstrated striking biochemical and cell biologi-
cal similarities between AD and classical prion diseases. In con-
trast to PrP-based disorders, such as mad cow disease, scrapie and 
kuru, AD does not appear to be communicable between indi-
viduals, but a growing body of data indicate that misfolded, toxic 
oligomers of Aβ and tau spread through the brain from neuron 
to nearby neuron much like misfolded PrP.25-32 For both Aβ8,33 
and tau,34-38 moreover, misfolded forms of the peptide or protein 
can be taken up by neurons containing otherwise normal Aβ or 
tau, which as a result then misfold, become toxic and spread to 
other neurons.

In addition to in vivo histopathology evidence,33,35,36,38 sev-
eral groups recently demonstrated biochemical mechanisms for 
prion-like propagation of Aβ and tau,9,39-42 and of additional 
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with a P301L mutation that adopts an AD-like phosphoryla-
tion profile, forms PHFs and causes the non-Alzheimer tauopa-
thy, FTDP-17, with full penetrance in humans.57,58 As the mice 
aged, they showed progressive tau pathology that began in the 
EC and subsequently followed the same path of axonal cir-
cuitry into the hippocampus as seen in human AD. Notably, 
this occurred without any detectable expression of human 
tau mRNA or protein outside of the EC. In other words, the 
toxic, mutant human tau that was expressed exclusively in the 
EC caused the endogenous mouse tau to misfold and become 
toxic, and then spread along synaptic circuits to the hippo-
campus. Besides confirming that tau pathology spreads along 
pre-determined, interconnected, neuroanatomical tracks, these 
data imply a prion-like process whereby misfolded “bad” tau 
can provoke the toxic misfolding of “good” tau. One important 
issue that remains to be determined is the mode of neuron-to-
neuron transmission of misfolded tau. For example, the avail-
able data do not discriminate among models in which toxic tau 
is transferred from diseased to healthy neurons at synapses, via 
cycles of exocytosis and endocytosis, via intercellular bridges or 
by some combination of these or other potential mechanisms 
that can be imagined.

Aβ as a Prion

While progression of Aβ aggregation in human AD brain has 
fueled speculation of prion-like mechanisms of misfolding, 
recent in vivo and in vitro data have provided direct evidence for 
prion activity of Aβ, and have suggested specific biochemical and 
biophysical mechanisms to explain Aβ pathology. The strongest 
in vivo evidence comes from a large body of work demonstrating 
that injection of misfolded Aβ from either biological or synthetic 
sources at specific loci in the brains of AD model mice acceler-
ates the appearance of aggregated, transgenically expressed Aβ 
throughout the brain.42,59-62 While these seed-induced Aβ depos-
its are initially observed in tissue directly surrounding sites of 
seeding, spreading eventually occurs along axonally connected 
regions and in separate locations, suggesting that both axonal 
transport and extracellular routes play a role in the spreading of 
Aβ throughout the brain.

Building on this substantial body of in vivo data are several 
lines of in vitro biochemical and biophysical investigation that 
have provided direct evidence for specific mechanisms in the 
propagation of Aβ misfolding. Researchers throughout the AD 
field have long noted anecdotally that purified Aβ often seems to 
behave in unpredictable ways that suggest an aggregation mecha-
nism capable of following multiple paths. These suspicions were 
recently confirmed when aliquots of monomeric Aβ from a single 
pool were aggregated separately, leading to formation of many 
structurally and immunologically distinct, aliquot-specific Aβ 
oligomers.63 These experiments also demonstrated that expos-
ing specific preformed Aβ oligomer species to monomeric Aβ 
promotes the aggregation of monomers into oligomeric species 
of the same size range and immunoreactivity. A straightforward 
interpretation of these data suggests a model in which the spe-
cific folding patterns of oligomers formed early in the aggregation 

proteins whose misfolding into β-sheet-rich structures under-
lies other well-known neurodegenerative diseases.26-28,30,32 Most 
intriguing in this regard is evidence for Aβ-tau interactions, 
both physically43,44 and in cell signaling.5,9,11,39,45-52 AD can thus 
be regarded as a disease that requires prion-like behavior of two 
distinct proteins.

Aβ and Tau Spread Stereotypically  
Through the Brain

One line of evidence suggesting prion-like mechanisms in AD 
comes from histological studies showing that aggregated forms of 
both Aβ and tau spread through the brain by following typecast 
neuroanatomical patterns. Perceptions about the exact details 
of these patterns have evolved somewhat over the years, but 
plaques and tangles do not follow identical blueprints for dispers-
ing through the brain. Plaques first appear in the basal tempo-
ral neocortex, then advance to the entorhinal and hippocampal 
regions before finally spreading throughout the neocortex.53 This 
progression might be explained by the movement of Aβ through 
anterograde transport and synaptic exchange mechanisms from 
regions where Aβ aggregation is initiated into nearby areas receiv-
ing axonal input from contaminated regions. Consistent with 
this hypothesis is the recent demonstration that cultured neurons 
can accomplish direct cell-to-cell transfer of Aβ oligomers.8 This 
intercellular transfer mechanism, in combination with ongoing 
production of new Aβ monomers and the fragmentation of fibrils 
and large oligomers into smaller but more numerous seeds that 
can initiate Aβ aggregation, could fuel the growth of more Aβ 
oligomers and fibrils.

In contrast to plaques, abnormal tau first appears in proximal 
axons within the locus coeruleus54 when it becomes immuno-
reactive with the AT8 monoclonal antibody, which detects tau 
phosphorylated at S202 and T205.23 Evidently, tau at this stage 
has not yet assembled into PHFs, but instead is in a soluble, pre-
NFT state. As AD progresses from pre-symptomatic to clinically 
detectable stages, the pattern of AT8-positive tau expands first to 
distal axonal and somatodendritic compartments within affected 
locus coeruleus neurons, and then sequentially to the entorhinal 
cortex (EC), dentate gyrus, CA1 region of the hippocampus and 
the neocortex. Superimposed on this spreading of abnormal tau 
is its gradual acquisition of additional phosphoepitopes that are 
diagnostic of diseased neurons, and its conversion into PHFs.34 
Interestingly, despite compelling evidence that Aβ is upstream 
of tau in AD pathogenesis,5,9,11,39,45-52 abnormal, pre-NFT tau is 
usually detectable before plaques.55,56 This may symbolize that 
soluble, oligomeric Aβ, rather than plaques, provoke tau pathol-
ogy, and that the pattern of plaque spreading simply reflects net 
rates of insoluble Aβ accumulation within various regions of 
brain over time.

Two groups, using very similar approaches, recently pub-
lished compelling experimental evidence that the spatiotem-
poral spread of tau in AD brain also involves transfer of tau 
from neuron to neuron along defined synaptic circuits.36,38 Both 
groups targeted expression of a human tau transgene specifically 
in the EC of mice. In both cases, the transgene encoded tau 
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three months of age. Strikingly, the Aβ3(pE)-x levels in these 
mice were just a few percent of what is commonly found in 
human AD brain, and neither gliosis nor neuron loss occurred 
in otherwise identical mice that lacked functional tau genes. The 
phenotype of the pE-Aβ-producing, tau knockout (KO) mice 
mimicked the response of primary neurons obtained from tau 
KO, but otherwise normal mice to cytotoxic oligomers of 5% 
Aβ3(pE)-42 plus 95% Aβ1-42. Unlike wild type (WT) neurons, 
the tau KO neurons were not killed by the mixed oligomers.9 
These collective in vitro and in vivo results emphasize the excep-
tional potency of pE-modified Aβ and the tau requirement for 
its cytotoxicity.

Tau as a Prion

Several lines of evidence have recently demonstrated the ability 
of filamentous tau polymers to propagate by a nucleated assembly 
mechanism. Monomeric tau is a soluble, natively unfolded pro-
tein69 that does not readily form filaments in vitro unless induced 
to misfold and polymerize by strongly anionic agents, such as 
arachidonic acid,70 heparin71 or RNA.72 Small oligomers, espe-
cially tau dimers, are intermediates in the filament assembly pro-
cess.44,73 Once filament polymerization has occurred, sonication 
can fracture the filaments into shorter, more numerous structures 
that can seed the assembly of additional tau monomers.74 Tau 
filaments therefore have the ability to self-propagate.

Pre-aggregated tau, comprising filaments and apparent oligo-
mers, is able to enter cultured cells and then cause the intracellu-
lar tau that they express to misfold and aggregate as well.75,76 This 
general principle has also been demonstrated in vivo through 
experiments showing that intracerebral injection of aggregation-
prone P301S mutant tau can induce the spreading of NFT forma-
tion throughout the cortex of mice expressing wild-type human 
tau, which does not form NFTs spontaneously.35 Given the small 
amount of initially injected material in these experiments, the 
data indicate that WT human tau was able to adopt at least some 
critical properties of the aggregated, mutant human tau to con-
tinue propagation throughout the brain. The aforementioned 
studies of P301L tau being expressed exclusively in the EC of 
transgenic mice, but driving tau pathology into hippocampal 
structures36,38 constitute further evidence for prion-like behavior 
of misfolded tau.

The possibility that tau oligomers serve as agents for the spread 
of tau pathology must be seriously considered as well. Such oligo-
mers have been detected immunologically in AD brain, most 
notably in neurons that had not yet accumulated NFTs.73,77 
Furthermore, intracerebral injection of tau oligomers, but neither 
monomeric nor fibrillar tau, has been shown to be neurotoxic, 
to cause synaptic and mitochondrial dysfunction, and to impair 
memory.78

Are Tau Prions Seeded by Aβ Prions?

Several groups have described adverse Aβ effects that depend 
on tau, thereby placing Aβ upstream of tau in AD pathogenesis 
and establishing tau as an essential protein in development of the 

process self-propagate by increasing the probability of similar 
folding patterns occurring in newly formed oligomers.

While numerous studies of Aβ have relied on the use of oligo-
mers made from synthetic versions of the conventional peptides, 
Aβ1-40 and Aβ1-42, Aβ isolated from biological samples, espe-
cially from AD brain, typically show much stronger bioactivity 
across a wide range of assays.47,64-66 This may be due, at least in 
part, to biologically produced Aβ comprising a rich variety of 
peptide species, including Aβ1-40 and Aβ1-42, that are dis-
tinguished from each other by their bioactivities and potency, 
N-terminal truncations, C-terminal truncations or extensions, 
and post-translational modifications of amino acids within the 
peptide backbone. Indeed, a recent study of the Aβ peptides pres-
ent in cerebrospinal fluid (CSF) samples revealed more than 20 
molecularly distinct peptide species.67 As described in the next 
paragraph, at least one naturally occurring variant of Aβ is both 
exceptionally toxic and prion-like. It is therefore possible that low 
abundance, highly potent, infectious forms of Aβ isolated from 
brain tissue or cell cultures can explain the enhanced potency of 
biologically produced, vs. synthetic Aβ.

We recently described a specific, prion-like mechanism of 
“intermolecular infectivity” involving Aβ3(pE)-42,9 which lacks 
the first two amino acids found in Aβ1-40 and Aβ1-42, and 
whose initial residue is enzymatically modified from glutamate 
to pyroglutamylate (pE) by glutaminyl cyclase.68 We found that 
Aβ3(pE)-42 can induce Aβ1-42 to form low-n oligomers that are 
~10-fold more cytotoxic to neurons than otherwise comparable 
oligomers made from Aβ1-42, alone.

Formation of the cytotoxic oligomers typically involved co-
incubation of synthetic Aβ3(pE)-42 with a 19-fold molar excess 
of synthetic Aβ1-42 for 24 h before dilution into primary neu-
ron cultures. Remarkably, if the two peptides were incubated 
separately for 24 h and then were mixed together at a 1:19 molar 
ratio of Aβ3(pE)-42 relative to Aβ1-42, the mixtures had negli-
gible cytotoxicity, like that associated with oligomers made from 
Aβ1-42 alone. Furthermore, cytotoxic mixed oligomers could 
be serially diluted into freshly dissolved Aβ1-42 monomers with 
only slight loss of cytotoxicity after each passage. Even after the 
Aβ3(pE)-42 concentration was serially passaged three times 
to drop its level from 5% to 0.000625% of the total Aβ pres-
ent, the final product was nearly 2/3 as cytotoxic as the starting 
material containing 5% Aβ3(pE)-42. The cytotoxic oligomers, 
which appeared to be predominantly dimers and trimers, were 
immunologically distinct from comparably sized oligomers made 
exclusively from Aβ1-42. These data signify template mediated 
protein-misfolding by a process in which the original template, 
Aβ3(pE)-42, can transfer its distinct conformation and cyto-
toxic properties to Aβ1-42, which then can act as a template itself 
to induce further, prion-like propagation of toxic Aβ oligomers.9

The in vivo relevance of these results was established by mul-
tiple lines of additional evidence. Most notably, putative dimers 
and trimers containing both conventional and pE-modified Aβ 
species were detected more commonly in brain cytosol collected 
post-mortem from AD patients than from normal age-matched 
controls, and transgenic mice that produced Aβ3(pE)-x experi-
enced massive gliosis and neuron death in the hippocampus by 
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disease.5,9,11,46,48-50,79,80 At least some of these Aβ-tau connections 
are indirect, such as Aβ induced activation of protein kinases, 
which then catalyze abnormal tau phosphorylation.11,45,47,51,52 
There is also evidence, though, for a direct pathogenic connec-
tion between Aβ and tau. In the absence of any other proteins or 
peptides, Aβ can bind to tau43 and tau monomers can be induced 
to oligomerize in vitro after exposure to low substoichiometric 
levels of Aβ oligomers.44 These findings raise the obvious pos-
sibility that, in vivo, Aβ oligomers seed the initial formation of 
tau oligomers, which can then self-propagate in the absence of 
additional input from Aβ (Fig. 1). If such a phenomenon were 
to occur in vivo, it would represent a seminal step in AD patho-
genesis. It might explain, moreover, why so many heroic efforts 
to target Aβ therapeutically in clinical trials have failed so far. 
This may be because all experimental patients in such trials must 
first have received a clinical diagnosis of AD, which can only 
be made long after tau pathology is already well underway and 
self-sustaining.
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Figure 1. Prion-like mechanisms in Alzheimer disease. Amyloid-β (Aβ) 
peptides can form toxic oligomers that are able to propogate by a 
prion-like mechanism of template-mediated protein misfolding. Aβ 
oligomers can activate tau kinases, which then catalyze pathogenic 
phosphorylation of tau (pTau), and may also serve as prion-like seeds 
that induce tau to oligomerize. Tau oligomers also self-propogate by a 
prion-like mechanism, and along with pathogenically phosphorylated 
tau, drive the degeneration and death of neurons involved in memory 
and cognition. The temporal and functional relationships between 
pathogenic phosphorylation and oligomerization of tau remain to be 
determined.
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